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Abstract

Gross trading volumes in financial markets are large and far exceed return volatility. In contrast,

“net volume” – trading from persistent portfolio reallocations – is substantially lower, as it excludes

transitory round-trip trades. This observation reveals a fundamental tension: If return volatility

is high, while net volume is low, then market participants either agree with each other (they

are “homogeneous”), or they are not sensitive to price changes (they are “inelastic”), resulting in

large price impacts of demand shocks. We formalize this tradeoff and demonstrate that the ratio

of return volatility to net volume provides a lower bound on price impact, conditional on the

level of investor heterogeneity. Using several measures from survey data, we document substantial

heterogeneity, implying meaningful lower bounds on price impacts. The bounds align closely with

reduced-form estimates from a variety of quasi-experiments, such as price impacts from index

reconstitutions, whereas traditional liquidity measures based on gross trading volumes perform

poorly. Our bounds prove particularly useful in settings where event-study evidence is difficult to

obtain: we demonstrate how they vary over time, across individual assets, and at various levels of

aggregation, including the aggregate stock market, and discuss their implications for asset pricing

models and the macro-structure of financial markets. We argue in such markets with heterogeneous

and inelastic investors, observed trading volumes are not peripheral but central to understanding

asset price movements.
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1 Introduction

It is widely held that trading activity in financial markets is extraordinarily large: Based on gross

(total) trading volume, the entire market value of a typical firm changes hands twice annually. To

interpret volume, the literature offers two complementary perspectives. First, investors trade only

when they have different views or preferences, so high trading volume has been interpreted as evidence

of considerable investor disagreement (e.g., Hong and Stein, 2007). Second, counterparties would take

opposite positions only at favorable price adjustments, so high volume relative to return volatility

suggests that investors are responsive to price changes, and therefore trades have small price impacts

(e.g., Amihud, 2002). Through the lens of these interpretations, the large trading volumes relative to

price volatility suggest that investors often disagree, yet their disagreements typically have only minor

impacts on prices.

However, gross trading volume can be highly misleading: By including transitory round-trip trades

within a period, it significantly overstates actual net trading across investors that persists over the

period of interest. To better reflect net trading activity, we propose “net volume” – the total net

portfolio reallocations across all investors over the period of interest, excluding within-period round-

trip trades. Figure 1 reveals a stark contrast between gross and net volume: At the quarterly frequency,

while gross volume often exceeds 50% of total outstanding shares, net volume is substantially smaller

– less than 10% for the average stock. Moreover, this gap has widened dramatically from a factor of

two to approximately ten from 1980 to 2025.

Figure 1: Gross Trading Volume versus Net Volume
The figure plots total CRSP trading volume (relative to shares outstanding) aggregated at the quarterly frequency against
net volume: the total net portfolio changes from quarterly institutional portfolio changes. The sample period is from
1980 to 2024.
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The low net trading volumes reveal a fundamental tension between the two complementary views:

When net volume is low while return volatility is high, investors cannot be both heterogeneous (dis-

agreeing with each other) and price-elastic (highly responsive to price changes) at the same time. If

investors disagree with each other, they must be unwilling or unable to take opposite positions without

large price adjustments, resulting in large price movements with low volumes. Or, if they are sensitive

to price, they must share similar beliefs or preferences, so there is limited trading activity among in-

vestors, and prices adjust to reflect common beliefs. This fundamental tension between heterogeneity

and elasticity forms the core insight of our paper.

We formalize this trade-off in a general framework that connects two observable moments, trading

volume σq, return volatility σp, to the underlying market structure: investor homogeneity ρ (the share

of demand shocks explained by the cross-investor average)1 and the price impact M per 1% demand

shock (also referred to as “multiplier”).

Our main theoretical result establishes that the price impact M is bounded below by:

M ≥ σp
σq

×
√

1

ρ
− 1.

The bound captures a key insight: high return volatility relative to volume implies either high

price impact (high M) or homogeneous investors (high ρ). To understand this relationship intuitively,

consider total demand as an iceberg. Only the heterogeneous component of demand surfaces and

becomes visible as observable trading volumes, while the common demand shifts that move all investors

in the same direction remain submerged and unobserved. Investor homogeneity ρ determines the

relative size of the observed volumes versus the unobserved common demand shocks. When investors

are perfectly homogeneous (ρ → 1), observed volumes represent only the tip of the iceberg. The high

return volatility is driven by the large unobserved common demand shocks without requiring a large

price impact. Conversely, when investors are highly heterogeneous (small ρ), most demand shocks

surfaces as observable volumes. Hence, low observed volumes imply small aggregate demand shocks,

and large return volatility can only be reconciled with a substantial price impact.

These two scenarios, while both consistent with observed volumes and volatilities, have funda-
1Conceptually, ρ is close to the average correlation of demand shocks across investors. We use “demand shocks” to

refer to any innovation that leads to a change in investors’ portfolio choice problem given the current price. When
demand shocks originate solely from beliefs, ρ captures investor agreement. More generally, demand shifts may arise
from heterogeneous constraints, regulatory frictions, or non-pecuniary preferences. We therefore use the broader term
investor homogeneity to encompass all forms of variation in investors’ portfolio choices.
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mentally different implications for how we understand asset prices. With homogeneous and elastic

investors, trading volumes are merely a side show – they capture only minor deviations from common

demand shifts that drive prices. In this world, asset pricing can rely on representative-agent models

while treating trading volume as an irrelevant byproduct of price formation. In a world with hetero-

geneous and inelastic investors, however, observed trading carries substantial incremental information

about asset prices. Here, observed trades are not peripheral but central to understanding asset price

movements.

The derivation of our bound relies on a set of fairly general assumptions. Most notably, following the

long tradition of log-linearization in finance and the growing literature on demand-system asset pricing

(Campbell and Viceira, 2002; Gabaix and Koijen, 2021), we assume that portfolio choice problems

can be approximated to first order by linear demand curves. Importantly, we impose no structural

assumptions on the source or structure of demand shocks, nor on particular microfoundations of the

elasticities. This makes our bound empirical in nature, similar in spirit to the Hansen–Jagannathan

bound (Hansen and Jagannathan, 1991). Due to the model-agnostic nature of the bound, it can serve as

a diagnostic tool when developing structural models to rationalize these moments. It can also be used

by empirical studies estimating price impact M or heterogeneity ρ to back out the other parameter,

thus providing a more comprehensive picture of the market environment.

We apply our bound to individual U.S. stocks. While net volume and return volatility are directly

observable, investor homogeneity ρ is inherently unobserved. However, there is substantial empirical

evidence confirming that investors are highly heterogeneous (ρ ≪ 1). Investors differ markedly in

regulatory constraints, return expectations, trading patterns, and portfolio compositions.2 Given this

evidence, a highly elastic market at the quarterly frequency appears unlikely through the lens of our

bound: For example, as σp

σq
≈ 1 for the average stock, achieving a price impact below 0.1 requires

almost perfect homogeneity among investors, i.e., ρ > 0.99.

To estimate the price-impact bound, we incorporate empirical proxies for ρ. Our goal is not to

obtain precise point estimates, but to demonstrate that the homogeneity parameter ρ lies within

a moderate range—avoiding pathological extremes near zero or one. Our baseline proxy measures

homogeneity through the common variations in forecast updates on earnings across analysts. For the
2See, among others, Giglio et al. (2021), Koijen and Yogo (2019), Dahlquist and Ibert (2024), Couts et al. (2024),

Barber and Odean (2008), Guiso et al. (2008), Kandel and Pearson (1995), Barber and Odean (2001), and Bretscher
et al. (2025). In addition, the vast investor heterogeneity can be directly observed by the fact that the number of different
mutual funds catering to the preferences and beliefs of different investors exceeds the number of stocks in the U.S. (see
Investment Company Institute Investment Company Institute (2025)).
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average U.S. firm, forecast updates in earnings per share (EPS) across analysts explain approximately

58% of the total variation in one-quarter-ahead EPS updates, yielding ρ = 0.58. When we use long-

term growth (LTG) forecasts instead, we obtain ρ = 0.27. Applying these homogeneity measures to

our model generates stock-level price impacts of 0.75 and 1.0, respectively.

The model parameter ρ should reflect all forms of investor heterogeneity, including belief disagree-

ment, constraints, and preferences, which may not be fully reflected in our empirical proxies for ρ.

However, our measures suggest that the true value of ρ lies in the moderate range rather than at the

extremes. In the moderate range,
√

1
ρ − 1 is relatively flat, making it insensitive to variations in ρ.

Consequently, cross-stock variation in our bounds is driven primarily by the volatility-to-volume ratio
σp

σq
. In fact, a simplified multiplier estimate M̃ ≡ σp

σq
(assuming ρ = 0.5) performs nearly as well as the

general bound.

We validate our price impact bounds against well-documented demand shock events, including

S&P 500 index inclusions and mutual fund flow-induced trading. Our bound-implied price impact

estimates exhibit strong correlations with actual price movements across these events. Stocks with

larger bounds experience significantly higher price changes for given demand shocks. For instance, the

price impact of flow-induced trades increases monotonically with our bounds. In contrast, traditional

liquidity measures based on gross trading volume, such as Amihud’s (2002) illiquidity ratio, show no

significant explanatory power for price impacts of persistent demand shifts. Constructing our bounds

with gross (rather than net) volume reveals no significant relationship to event study price impacts,

highlighting that net volume is not merely a modeling choice but a meaningful economic quantity.

We further examine how price impact bounds vary over time, across assets, and at different ag-

gregation levels. First, long-term price impact has remained largely unchanged over the past 30 years

despite gross trading volume increasing fivefold. As Figure 1 shows, net volume has remained relatively

constant. Second, consistent with information-based theories, large-cap stocks exhibit smaller price

impacts, while stocks with higher systematic risk show larger price impacts, consistent with risk-based

foundations. Momentum stocks also display higher price impacts, reflecting upward-sloping demand

curves of momentum investors. Third, examining different aggregation levels reveals that net volumes

decline more rapidly than return volatility when moving to higher aggregation levels, resulting in higher

price impact estimates for market-level portfolios compared to individual stocks or industry portfolios.

Our bounds provide an ex-ante measure of how informative trading volume is for security prices.

When demand is highly elastic, trading volume reveals little about prices since demand shifts are
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easily accommodated with minimal price impact. Conversely, when demand is inelastic, trading volume

becomes highly informative for prices. Empirically, our bounds suggest that the stock market is closer to

inelastic and heterogeneous than elastic and homogeneous. In such markets, observed trading volumes

capture a significant portion of the underlying demand variation, and have significant impact on prices.

Echoing Hong and Stein (2007) and more recently Gabaix and Koijen (2021), our bounds demonstrate

that trading volumes are not mere byproducts of price formation, but essential for understanding asset

prices, and financial market volatility.

Related Literature. This paper offers a synthesis of the literature on price impact and the literature

on investor disagreement. First, a large strand of literature documents that investor-specific demand

shocks can have a meaningful long-term price impact. For example, a series of papers studies price

changes upon inclusion or deletion of a stock in an index (see, among others, Shleifer, 1986, Harris

and Gurel (1986), Wurgler and Zhuravskaya (2002), Kaul et al. (2000), Chang et al. (2015), Pavlova

and Sikorskaya (2022), Greenwood and Sammon (2025), and Aghaee (2025)). Coval and Stafford

(2007), Lou (2012), and Edmans et al. (2012) document persistent price changes due to flow-induced

trading by mutual funds. Hartzmark and Solomon (2021), Schmickler and Tremacoldi-Rossi (2022),

Kvamvold and Lindset (2018), and Honkanen et al. (2025) document that reinvested dividend payouts

significantly affect asset prices. Our price impact bounds provide an ex ante statistic that can be

used as a simple benchmark based on observable empirical moments. In addition, finding exogenous

variation in demand to identify price impact for aggregated portfolios such as the total stock market is

often difficult. Our bounds can easily be computed at different levels of aggregation for all asset classes

and, thus, provide a useful sanity check for event studies. More importantly, event-study evidence is

often difficult to obtain, particularly when researchers face limited cross-sectional variation over time

or insufficient time-series variation across assets. Estimating price impacts for aggregated portfolios

– such as entire asset classes – is especially challenging, as it requires identifying demand shifts that

are both exogenous and sufficiently large. Our estimation-free bounds offer a practical alternative by

providing theoretically grounded benchmarks for the expected price impact in settings where event

studies are infeasible.

More broadly, our bounds contribute to the burgeoning demand-system asset-pricing literature

that models investors’ portfolio allocation and asset prices jointly (Koijen and Yogo, 2019; Gabaix

and Koijen, 2021).3 Several recent papers in this literature have alluded to the tension between
3See, among others, Koijen and Yogo (2020), Haddad et al. (2021), Han et al. (2021), Koijen et al. (2021), Fang et al.
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elasticity and heterogeneity. Gabaix and Koijen (2021) argue that the relatively stable equity share

of institutional investors implies inelasticity at the aggregate market level. We share a similar model

framework with their approach. Their granular-instrument-variable (GIV) estimator further imposes a

factor structure on demand shocks and identifies investor homogeneity by extracting common factors

from investor flows. More recently, Gabaix et al. (2025) compute risk transfer – changes in market

risk exposure by households, a measure conceptually close to the net volume for the aggregate market

– is very small at the quarterly frequency. They demonstrate that standard macro-finance models

featuring high price elasticities cannot reconcile the tension between the heterogeneity in holdings

and the small risk transfer in flows. Complementary to their approach, our bounds take a relatively

model-free approach. Moreover, we compute bounds for individual stocks, different portfolios, and the

aggregate stock market, and test their empirical relevance in event studies.

Our paper also contributes to the literature on investor disagreement. For example, Kandel and

Pearson (1995) and Bamber et al. (1999) document that earnings announcement days consistently

feature abnormal trading volume and small price changes. In those papers, the combination of high

volume and low volatility is typically interpreted as evidence of differential interpretations of public

signals, i.e., disagreement. Hong and Stein (2007) advocate for models featuring disagreement given

the enormous trading volume observed even at times when return volatility is low.4 Our paper offers

a formal framework to interpret volumes as investor disagreement. While we find that net trading

volumes are low at longer horizons, we argue this does not reflect an absence of disagreement. Instead,

it reflects the inelasticity of market participants, which amplifies the price impact of investor-specific

demand shocks and serves as an empirically useful measure of long-term price impact.

Third, by drawing a distinction between net and gross volume, our paper naturally contributes to

the literature on market liquidity.5 We highlight that the distinction between net and gross volume

helps explain why traditional liquidity measures – such as those in Amihud (2002), Pástor and Stam-

baugh (2003), and Brennan et al. (2013) – may be less suitable to capture long-term price impact from

persistent demand shifts. Intuitively, our bounds on price impact can be viewed as a long-horizon

(2022), Coqueret (2022), Huebner (2023), Jiang et al. (2022), Jiang et al. (2024), Koijen et al. (2024), Jansen (2025),
Tamoni et al. (2024), Bretscher et al. (2025), Chaudhary et al. (2024), Jansen et al. (2024), Darmouni et al. (2022).

4See, for example, Harris and Raviv (1993) and Banerjee and Kremer (2010) for theoretical models reconciling the
observed empirical patterns.

5See, among others, Constantinides (1986), Brennan and Subrahmanyam (1996), Heaton and Lucas (1996), Vayanos
(1998), Brennan et al. (1998), Datar et al. (1998), Chordia et al. (2001), Amihud (2002), Jones (2002), Huang (2003),
Pástor and Stambaugh (2003), Anshuman and Viswanathan (2005), Brunnermeier and Pedersen (2009), Garleanu and
Pedersen (2007), and Bouchaud (2022).
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counterpart to the illiquidity measure proposed by Amihud (2002).

The remainder of the paper is structured as follows. Section 2 lays out the main theory. Section 3

describes the data, construction of net volume and discusses its difference from gross trading volume.

Section 4 constructs the price impact bounds for the cross-section of US equities; Section 5 tests the

empirical relevance of the bounds using different event studies. Motivated by the empirical relevance,

Section 6 then examines the heterogeneity of these bounds outside of event studies – over time, across

assets, and at different levels of aggregation. Section 7 concludes.

2 Theory

In this section, we lay out our main framework and derive the price impact bound.

Notation. Throughout, we use i = 1, 2, ..., I to denote the investor, n to denote the asset. We

use Si(n) to denote the ownership share of investor i in the market for asset n. As a short-hand,

we use subscript S in place of i to denote size-weighted aggregation, i.e., xS(n) =
∑I

i=1 Si(n)xi(n).

To highlight the cross-sectional expectation-like feature of the size-weighted aggregation, we also use

Êcs
S [xi] =

∑I
i=1 Sixi, and suppress the subscript S when there is no ambiguity.

2.1 The Demand Curve

Consider a generic portfolio allocation Qi,t(n) = Qi(Pt(n), Ui,t), where Qi,t(n) is the quantity of asset

n held by investor i at time t, Pt(n) is the price of asset n at time t, and Ui,t captures all other factors

that affect investor i’s demand for asset n at the given price Pt(n). These factors can include the

investor’s wealth, the risk-free rate, risk aversion, uncertainty, prices of substitutable assets, and other

relevant variables.

We take a log-linear approximation of the portfolio choice problem around the long-run mean and

take first-differences to obtain a linear demand curve:

∆qi,t(n) = −ζi(n)∆pt(n) + ui,t(n) (1)

where ∆qi,t(n) is the percentage change in holdings of asset n by investor i at time t (which we refer to

as flows), ∆pt(n) is the percentage price change of asset n at time t, or simply referred to as its return

at time t, and ui,t(n) is the demand shock for investor i at time t. For simplicity, we assume their
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time-series mean is equal to zero. The parameter ζi(n) is the investor-asset-specific elasticity, which

measures how much investor i’s demand for asset n changes when the price changes by 1%, ceteris

paribus.

To provide intuition for the different components of the demand curve, we can connect this linear

specification with canonical models. In Appendix B, we sketch several microfoundations, including

standard portfolio choice under CRRA utility. Our preferred interpretation draws on learning-from-

price models such as Grossman and Stiglitz (1980) and Hellwig (1980). In these models, the demand

shock Ui,t represents noisy private signals about the asset’s fundamental value, while the price Pt(n)

aggregates information across investors. The price elasticity ζi(n) captures the trade-off between the

informativeness of one’s private signal and the market price: the more accurate the market price

relative to the investor’s private signal, the more the investor relies on the price, resulting in a more

inelastic demand curve (smaller ζi(n)).

While learning-from-price models provide a natural framework for interpreting elasticity and dis-

agreement, we do not restrict our analysis to this interpretation. Instead, we specify the demand curve

generically. In any asset-pricing model that features portfolio choice, either explicitly or implicitly,

investor demand can be decomposed into changes due to price movements and changes holding prices

fixed.6 Our bound holds under these different model frameworks; however, one should be careful, when

interpreting the implied elasticities and demand shocks. Moreover, the underlying model does not need

to be static: in dynamic settings, investors care about the path of future expected returns, while the

market clears through the current price, which summarizes the market’s expectations about future re-

turns. In this case, investors’ demand shocks contain beliefs about future expected returns that deviate

from those implied by the current price. Further, our framework can also accommodate multiple assets.

To that end, the demand shock ui,t(n) captures substitution and arbitrage effects across assets.7 Our

only assumption at this stage is that first-order log-linearization provides a reasonable approximation

of the true portfolio choice problem.

For a generic demand curve specified in Equation (1), our goal is to connect elasticity and demand
6See Koijen and Yogo (2025) for further discussion on microfoundations.
7With multiple assets, the full demand curve can be specified in vector form as ∆qi,t = −Zi∆pt + ũi,t. For asset n,

this can be expressed as ∆qi,t(n) = −ζi(n)∆pt + ũi,t(n), where ui,t(n) ≡
∑

m ̸=n Zi,(n,m)∆pt(m)+ ũi,t(n). Care needs to
be taken when interpreting demand shock homogeneity, as it includes substitution effects; the inverse of elasticity in this
case also corresponds to the price impact relative to its substitute assets. When substitution effect is mild, as it is the
case for the equity market (e.g., see Chaudhary et al., 2023), the difference is quantitatively small. However, this model
framework would not be suitable for analyzing markets with strong substitution patterns such as individual corporate
bonds.
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shock heterogeneity to observable moments: volatilities in returns and flows. To do so, we first study

how the return and flow volatilities are determined in the log-linear model.

In the remainder of this section, we proceed stock by stock, and suppress the stock index n for

notational ease.

2.2 Elasticity and Price Impact

The flip side of the elasticity is the price impact per unit of demand shock. To see that, we impose the

market clearing condition – all trades sum to zero. Denote Si =
Qi∑
i Qi

the ownership share of investor

i in the market for asset n. The market clearing condition is given by:

∑
i

Si∆qi,t = 0 (2)

Price adjusts to clear the market, and hence,

∆pt =
1

ζS
uS,t (3)

where ζS =
∑

i Siζi and uS,t =
∑

i Siui,t are the aggregate elasticity and demand shift given by the

size-weighted averages of investor-specific elasticities and investor-specific demand shifts respectively.

The inverse of the aggregate elasticity, 1
ζS

, quantifies how much the price adjusts for a 1% aggregate

demand shock of total outstanding shares. Therefore, the lower the aggregate demand elasticity, the

larger is the price adjustment per unit of demand shock which is needed to induce investors to step

in. We denote the inverse of the aggregate demand elasticity as M and refer to it as price impact or

multiplier of asset n.

The multiplier M links return volatility to the volatility of the aggregate demand shock, given by:

σ2
p = M2V ar(uS,t) (4)

For example, through the lens of this framework, the well-known excess volatility puzzle implies

that either standard models do not generate sufficiently volatile aggregate demand shocks, or that

agents are too responsive to price changes, i.e., the price impact M is too small.
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2.3 Flows and Heterogeneity

To illustrate the relationship between flows and heterogeneity, we first consider the case with homo-

geneous elasticities across investors: ζi = ζS = ζ. Note that this assumption will be relaxed later.

Under the homogeneous elasticity assumption, we can plug the equilibrium price equation (3) into the

demand equation (1) to have:

∆qi,t = ui,t − uS,t. (5)

Hence, trades reflect the differences of investors’ demand shocks from the average demand shock in

the market.

The size-weighted average variance of ∆qi,t is given by:

σ2
q ≡

I∑
i=1

SiV ar (∆qi,t)

=

(
I∑

i=1

SiV ar(ui,t)

)
− V ar (uS,t)

(6)

To derive the second equality, we use Equation (5) and the identity
∑I

i=1 SiCov(ui,t, uS,t) = V ar(uS,t).

Hereafter, we refer to σq as flow volatility. It measures the total amount of trading activity by investors.

The theoretical analysis focuses on flow volatility defined in (6); later we show that (net) trading volume

is a close proxy for flow volatility, and use the terminology interchangeably when the distinction is

unimportant.

Defining ρ ≡ V ar(
∑I

i=1 Siui,t)∑I
i=1 SiV ar(ui,t)

, we can rewrite flow volatility as follows:

σ2
q = V ar(uS,t)

(
1

ρ
− 1

)
. (7)

We refer to ρ as investor homogeneity. To understand the interpretation, note that it is the share

of demand shocks that is explained by the cross-sectional average of the demand shocks. To see this

most clearly, we can use the cross-sectional expectation notation Êcs to express it as follows:

ρ =
V ar

(
Êcs [ui,t | t]

)
Êcs [V ar (ui,t | i)]

∈ [0, 1]. (8)

Empirically, ρ is the R2 of the (size-weighted) time fixed effects of the demand shocks. As an R2,

it ranges between 0 and 1. When ρ = 1, all investors have identical demand shocks, and hence
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are homogeneous; when ρ → 0, the demand shocks are completely heterogeneous across investors.8

Alternatively, with homoskedasticity, the homogeneity ρ can also be interpreted as the average pairwise

correlation of the demand shocks ρ ≈
∑I

i=1

∑
j ̸=i SiSjcorr(ui,t, uj,t).9

Note that heterogeneity does not only come from differences in idiosyncratic demand shocks, but

also from differences in the responses of different investors to the same shocks. To see this, suppose

idiosyncratic demand shocks are determined by their differential exposure, λi, to a single common

shock, ηt, which has unitary variance, i.e., ui,t = λiηt. Use Êcs to denote the size-weighted cross-

sectional average, we have:

ρ =
Êcs [λi]

2

Êcs
[
λ2
i

] = (1 + V̂ ar
cs
(λi)

Êcs [λi]
2

)−1

. (9)

This implies that demand homogeneity decreases in the variation of the exposures to the common

shock ηt across investors. Further, demand homogeneity can be arbitrarily close to zero when the

variation in λi relative to its mean is large. In sum, investors can be highly heterogeneous even if their

idiosyncratic demand shocks can be fully explained by a common shock, ηt, provided their exposures

to that shock differ.

With this interpretation, Equation (7) states that flow volatility is the product of the size of

aggregate demand shocks and the investor heterogeneity. The extent to which highly volatile aggregate

demand translates into flow volatility (trading volume) is driven by the amount of investor disagreement

ρ.

2.4 The Elasticity Bounds

To derive the bound, the key observation is that both price and flow volatilities depend on the volatility

of the average demand shock in the market, but with a different coefficient: the multiplier M for

return volatility and the investor heterogeneity D for flow volatility. Taking the ratio of flow volatility

8With finite number of investors, ρ ≥
∑

i S2
i σ

2
i∑

i Siσ
2
i

if the covariances of the demand shocks across investors are non-
negative, and it reaches the lower bound when shocks are completely uncorrelated. It reaches zero only if investors
demand completely offset each other in aggregate.

9We can write V ar(uS,t) =
∑I

i=1 S
2
i σ

2
i +

∑I
i=1

∑
j ̸=i SiSjσiσjcorr(ui,t, uj,t), under homoskedasticity, σi = σj = σ,

so we have ρ =
∑I

i=1 S
2
i +

∑I
i=1

∑
j ̸=i SiSjcorr(ui,t, uj,t). The first term is the Herfindahl–Hirschman Index (HHI) of

the ownership distribution, which vanishes to zero as N is large.
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in Equation (7) and return volatility in Equation (4), we have:

M =
σp
σq

×
√

1

ρ
− 1︸ ︷︷ ︸

D

(10)

We refer to D as investor heterogeneity.

Equation (10) connects observable market quantities – price and flow volatilities – to the underlying

elasticity and investor heterogeneity. When prices exhibit high volatility relative to trading activity (a

large σp

σq
ratio), two possible explanations emerge: either the price multiplier M is large, amplifying

price responses to demand shocks, or investors are highly homogeneous (ρ → 1), causing observed

trading activity (the tip of the iceberg of total demand shocks) to significantly under-represent the

magnitude of underlying demand shocks.

So far, price impact M is derived under the homogeneous-elasticity assumption. To consider the

case with heterogeneous elasticities, we make an assumption on the distribution of elasticities. Without

getting too attached to a particular data-generating process, we consider the following environment:

Assumption 1. The elasticity ζi for each investor i are drawn independently from the parameters

governing the demand shock process ui,t.

Assumption 1 serves as a neutral benchmark, but it is not necessary for the main result. With

an arbitrary data-generating process of elasticities and the demand shocks, one can end up in the

pathological case where the investors that receive larger demand shocks end up selling because they

also react more to the price changes. In Appendix A, we discuss the more precise condition under

which our main theorem holds.

Under the Assumption 1, the implied multiplier will be even larger for a given level of investor

heterogeneity D. Intuitively, this is because heterogeneous elasticities provide additional reasons for

trading other than investor heterogeneity: Consider the case where investors receive an identical de-

mand shock. Price adjusts, but as investors respond to the price adjustment differently, they also want

to trade with each other.

Hence, when an econometrician infers the magnitude of aggregate demand shocks from observed

flow volatility under the assumption of homogeneous elasticities, this assumption leads to overesti-

mation of the underlying demand shocks. The overestimation occurs because some observed trading

activity stems not from heterogeneous demand shocks but from investors’ heterogeneous responses to
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price changes. Since the true aggregate demand shocks are smaller under heterogeneous elasticities,

the actual price impact exceeds that given by (10). Formally, we establish the following theorem:

Theorem 1. Under Assumption 1, the price impact M of demand shocks is lower-bounded by the

volatility-to-volume ratio σp

σq
, adjusted by the correlation of investors’ demand shifts ρ:

M ≥ σp
σq

×
√

1

ρ
− 1 (11)

Proof. See Appendix A.

In-sample bounds. Notice that though we express the bound in terms of population parameters,

the identities used in deriving the bound all hold in sample as well. Hence we can express the bound

using sample moments, given as:

M ≥ σ̂p
σ̂q

×
√

1

ρ̂
− 1 (12)

where σ̂p and σ̂q are the sample counterparts of price and flow volatilities, and ρ̂ is the homogeneity

of the demand shocks within the sample period.

In fact, the bound can be applied period by period, under the assumption that ∆qi,t and ∆pt have

mean zero in a given period t (which can be achieved by demeaning across t, assuming means are

stable):

Mt ≥
|∆pt|√∑I
i=1 Si∆q2i,t

×
√

1

ρt
− 1 (13)

where ρt ≡
(
∑I

i=1 Siui,t)
2∑I

i=1 Siu2
i,t

is the investor homogeneity in period t.

2.5 Flow Volatility and Net Volume

The key input to our bound, flow volatility σq, is defined as the size-weighted average of investor-

specific flow volatilities. Seemingly complicated, we show that it is closely related to the total trading

activity from changes in investors’ portfolios, which we term net volume. For a stock in a given quarter

t, net volume is defined as the sum of absolute value of quarter-on-quarter changes in positions of all

investors, normalized by shares outstanding:

NetVolt =
∑

i |∆Qi,t|
Q̄

(14)

14



where ∆Qi,t = Qi,t−Qi,t−1 is the change in position of investor i from t−1 to t, and Q̄ is total supply.

The net volume measures the (size-weighted) mean absolute deviation (MAD) of flows:

E
[
NetVolt

]
= E

[∑
i

Si
|∆Qi,t|
SiQ̄

]
=
∑
i

SiE [|∆qi,t|] . (15)

It mirrors the definition of flow volatility, σq ≡
√∑I

i=1 SiE [(∆qi,t)2], but with an L1-norm rather

than an L2-norm. For common distributions, the mean absolute deviation E [|∆qi,t|] is proportional to

standard deviation σq,i by a constant factor ν determined by the underlying distribution. For example,

for normally distributed ∆qi,t, ν =
√

π
2 ≈ 1.25. Empirically, Appendix Figure E.1 shows that net

volume scaled by
√

π
2 and σq are effectively equivalent with a cross-sectional correlation around 0.9

and an OLS slope coefficient of 1.1. For this reason, we view the scaled net volume,
√

π
2NetVolt, as

an alternative (and more robust) estimator for σq, and use net volume to refer to σq at the conceptual

level.

Net volume is closely linked to the gross trading volume by construction. However, unlike gross

trading volume, which aggregates all trades within a quarter, net volume omits offsetting round-trip

trades and measures net quarter-on-quarter change in portfolio holdings. To see this, consider an

investor that moves from 1000 shares at t to 1100 shares at t+ 1
2 , back to 1000 shares at t+ 1. While

the investor’s gross volume is 200 shares, their net volume from t to t + 1 is |∆Qi,t| = 0 shares. To

understand the liquidity provision at the quarterly frequency (here t to t+ 1), the intraquarter round

trips are irrelevant and hence netted out from net volume. The next section provides more details on

the distinction between net volume and gross trading volume.

3 Data and Empirical Facts

3.1 Data Sources and Variable Construction

Data. Our empirical analyses are all at the quarterly frequency. We obtain quarterly institution-

level share holdings Qi,t(n) from 1990 to 2024 from Thomson Institutional Holdings Database (s34

file). Institutions are denoted by i = 1, ..., I. The subscript t indicates the report date of the 13F filing.

10 Further details can be found in Appendix C.1. Subsequently, we merge quarterly stock holdings
10In the main text, we use holdings at the institution level (e.g., BlackRock as a single entity rather than as individual

funds) to achieve the most comprehensive coverage. Since holdings are aggregated across funds within the same asset
manager, transactions among funds within the same institution are not observed at this level, which could potentially
result in smaller net volumes relative to gross volumes. However, in Appendix C.1, we show that net volumes computed
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with data on prices and fundamentals from CRSP, Compustat, and IBES. We restrict our sample to

common ordinary shares (share codes 10 and 11) traded on the NYSE, AMEX and NASDAQ (exchange

codes 1, 2, and 3), that have (on average) at least 10 institutional holders and at least 30% observed

institutional ownership.11 ∆ denotes quarterly changes. Ownership shares (size-weights) are denoted

by Si,t(n) =
Qi,t(n)

Q̄t(n)
, where Q̄t(n) are the total shares outstanding of the stock. Empirically, we do not

observe the holdings of all investors, but are restricted by reported 13F filings. We therefore construct

the trades of the residual sector that holds the remaining shares outstanding such that the trades of

all investors sum to 0.12

Estimating volatilities. As discussed in Section 2, our bound holds both in sample as well as

period by period. We estimate both σq(n) and σp(n) in the time series for each stock using 5-year

backward-looking rolling windows which prevents our results from suffering from forward-looking bias.

We estimate σp(n) using the time-series volatility of quarterly stock returns. As described in Section

2.5, σq(n) can either be measured directly as
√∑I

i=1 Si,tV̂ ar(∆qi,t(n)), the size-weighted average of

investor-specific volatilities (the L2 norm), or approximated using net volume
√

π
2 Ê [NetVolt(n)] (the

L1 norm). We construct both measures and find similar results. Generally, we favor net volume for

several reasons. First, it is straightforwardly constructed and closely linked to gross trading volume.

Second and more importantly, L2 norms, such as the standard deviation, are susceptible to outliers –

a common feature in flow data – while L1 norms, such as mean absolute deviation, are more robust

estimators of statistical dispersion in the presence of fat tails (due to frequent extensive margin trades).

Unlike σq and σp, which are directly observable from trade and price data, investor homogeneity

ρ is inherently unobserved. To that end, we first present results that are agnostic about the level of

investor homogeneity. Later in Section 4.2, we then present and discuss different strategies of how to

empirically measure ρ.

The top panel of Table 1 reports σp(n) and σq(n) (both measured via L1 and L2 norms). The

average share in our sample has a quarterly return volatility σp(n) of 22%. The average σq constructed

from net volumes is 25%. The 5th percentile, median, and 95th percentile are given by 8%, 23%, and

50% respectively. In contrast, the L2 measure of σq is distributed very similarly with a slightly higher

at the mutual fund level are very close to those at the institution level, suggesting that within-fund-family trades are
negligible.

11All results are robust to alternative cut-offs.
12All results in the paper are robust to omitting the residual sector and constructing Q̄t(n) (and the corresponding

size weights) as the sum of institutional shares held. However, we prefer to construct the residual sector as doing so
effectively accounts for trades by the institutional sector as a whole, which would be omitted otherwise.
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average of 30% and the 5th percentile, median, and 95th percentile given by 10%, 30%, and 53%,

respectively. As a consequence, the ratio of return volatility to net volume (hereafter, volatility-to-

volume ratio) equals 1.15 for the average share. However, there exists considerable variation in this

ratio as can be seen from 5th and 95th percentiles which equal 0.36 and 3.02, respectively.

Finally, Table 1 also reports moments on the distributions of institutional ownership and trading

volume. For example, the average share is held by about 200 institutions with an average institutional

ownership share of 60%. Notably, all our main results hold when restricting the sample to stocks for

which the institutional ownership is higher than 90%.

Table 1: Summary Statistics
The table summarizes the distribution of the key variable inputs for deriving the price impact bounds over the cross-
section of US equities. The first rows report the volatility of returns σp and the volatility of flows σq both explicitly
computed via size-weighted investor-specific volatilities, and the L1 approximation from scaled net volume. The volatilies
are computed over 5-year rolling windows. The middle panel reports the number of investors holding each stock, the
distribution of institutional ownership and the investor concentration defined as

∑
i S

2
i,t(n). The last rows report gross

quarterly trading volume (from CRSP) alongside net volume divided by 2. The division by 2 avoids double-counting
trades and ensures comparability to gross trading volume.

Mean Std 5th pctl. Median 95 pctl.

Volatilities of Trade and Returns
Return Volatility σp 0.22 0.15 0.09 0.19 0.47
Flow Volatility σq (L2) 0.30 0.13 0.10 0.30 0.53
Net Volume σq (L1) 0.25 0.13 0.08 0.23 0.50
Volatility-Volume Ratio σp/σq 1.16 1.32 0.36 0.81 3.02

Ownership Distribution
Number of Institutional Holders 202.94 276.54 14.00 124.00 663.00
Institutional Ownership 0.60 0.25 0.16 0.62 0.99
Ownership Concentration (HHI) 0.23 0.21 0.04 0.16 0.67

Trading Volume
CRSP Total Volume 0.46 0.55 0.06 0.31 1.35
1
2

Net Volume 0.10 0.09 0.02 0.08 0.24

3.2 Net Volume versus Gross Trading Volume

A well-known feature of equity markets is the high volume of trading. In fact, in the past 30 years,

the quarterly turnover for the median stock on the NYSE, AMEX, and NASDAQ, was around 50-

100%. We confirm this in our sample by computing quarterly gross trading volume by aggregating

CRSP monthly turnover at the quarterly frequency. Panel a) of Figure 2 plots the distribution of gross
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volume. Over our sample period average quarterly gross trading volume has steadily increased from

about 15% to 50%. In contrast, Panel b) of Figure 2 plots net volume constructed from changes in

institutional investors’ portfolios. The main take away from comparing the two Panels a) and b) is that

average gross volume is much higher compared to average net volume. For example, as of 2024, the

quarterly net volume amounts to 8% of the shares outstanding for the average stock. In other words,

every quarter, institutional investors turn over 8% of a stock’s shares outstanding. Instead, quarterly

gross trading volume for the average stock is 60%, more than seven times higher than net volume, on

average. This ranking is preserved over time and across the entire cross-section of US equities.

If institutional investors were the only investors trading the underlying securities, then any differ-

ence between gross and net volume is due to offsetting round-trip trades within a quarter. Importantly,

round-trip trades cannot effectively accommodate persistent demand shifts. In other words, this im-

plies that in recent years, 85% of gross trading volume are due to offsetting round-trip trades within a

quarter that do not provide quarterly liquidity to financial markets.

Figure 2: Quarterly Gross Volume versus Net Volume: US Equities
The figure plots the distribution of quarterly gross trading volume relative to shares outstanding and quarterly net
volume divided, over the cross-section of US stocks from 1980 to 2024. We plot net volumes divided by 2 to avoid
double-counting trades, which ensures comparability to gross trading volumes (as reported by CRSP).
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In a next step, we verify that our conclusions are not driven by large offsetting trades within the

aggregated residual investor. Panel a) of Figure 3 plots the ratio of gross volume to net volume for

the entire sample (that is, all stocks) and for the sample that includes only shares with institutional

ownership above 95%. Importantly, the two lines lie on top of each other for almost the entire sample

period, suggesting that differences between gross and net trading volume are not due to unobserved
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changes in investor portfolios. The low net volumes are also not driven by aggregation across mutual

funds within a management company. In Appendix C.1, we disaggregate 13F managers into their

constituent mutual funds and ETFs and show that net volumes computed at the fund level are only

marginally larger than at the institutional level, suggesting that within-fund-family trading is negligible.

Studies using household data further confirm that households have even smaller net volumes com-

pared to institutional investors. Using portfolio holdings data from households, Gabaix et al. (2025)

measure the risk transfer – defined as the percent change in the market risk exposure for a group of

investors over a given period, a measure closely related to net volume at the aggregate market level.

They find that the quarterly risk transfer is only 0.65% for household groups, significantly smaller than

the 6% net volume observed for institutional investors at the aggregate market level (as reported in

Figure 9 below).

Given the large differences between gross and net volumes, one may wonder whether these measures

are fundamentally economically different. Interestingly, Panel b) of Figure 3 suggests they are not.

In fact, despite a difference in levels up to a factor of seven, gross and net volumes are remarkably

highly correlated in the cross-section. The cross-sectional correlation in ranks is about 80% in recent

periods.13 This high correlation suggests that net and gross volumes are at least to some extent driven

by the same fundamental economic primitives. The key difference is that gross trading volume is

substantially inflated by round-trip trades that do not contribute to long-term liquidity provision.

Figure 3: Net Volume versus Gross Volume: Robustness
Panel a) of the figure plots the ratio of quarterly gross trading volume (CRSP) relative to net volume for all stocks, and
stocks with institutional ownership above 95%. Panel b) plots the (rank) correlation of total and net trading volume.
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13Mechanically, net volume is part of gross volume by construction. However, this cannot explain the high correlation
due to the large discrepancy in the level.
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4 The Price Impact Bound

4.1 The Price Impact Bound under Varying Levels of Investor Homogeneity

As discussed above, in a first step, we evaluate the price impact bounds without taking a stance on

the level of investor homogeneity ρ. In particular, we document the bounds M(ρ) as a function of ρ

for U.S. equities. That is, using stock-level return volatility, σp, and net volume, σq, constructed as

described in the previous section, we compute the bound M(ρ) for each stock while varying ρ between

0 and 1. Panel a) of Figure 4 plots the distribution of the lower bounds of price impact for individual

U.S. stocks. In contrast, Panel b) plots the distribution of the upper bounds on aggregate elasticity,

i.e. the inverse of the price impact bounds.

Figure 4: Price Impact Bounds under Varying Homogeneity ρ
The figure plots the price impact bound for a given level of investor homogeneity ρ. Panel a) plots the lower bound on
the price impact M(ρ) as a function of ρ, for the average US stock, as well as the top and bottom 10% of stocks with
the highest and lowest volatility ratio σp

σq
. The lower bound on price impact bound can be inverted to obtain an upper

bound on the aggregate (size-weighted) elasticity. Panel b) plots the upper bound on the aggregate elasticity ζS(ρ) for
US stocks.
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(b) Elasticity Bound ζS(ρ)
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As can be seen from the figure, a high volatility-to-volume ratio is consistent with perfectly elastic

markets that feature a close-to-zero price impact. However, such a coexistence requires investors be

extremely homogeneous, implying that their demand shocks are almost perfectly correlated. Note that

the average level of the volatility-to-volume ratio σp

σq
is about 1. That is, for a 1% demand shock to

move prices less than 0.1% (M < 0.1), investor homogeneity must exceed 99%. In other words, the

empirical level of the volatility-to-volume ratio can only be reconciled with elastic markets if investors

are homogeneous to an extreme, likely unrealistic degree. Put differently, under reasonable levels of

investor disagreement, price impact will exceed 0.1%. Generally, the bounds are more stringent as
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investor homogeneity decreases (ρ → 0).

4.2 Measuring Investor Homogeneity

Without an explicit measure of investor homogeneity, ρ, the lower bound of price impact cannot be

determined. However, as can be seen from Figure 4 the bound is relatively flat when ρ lies between

0.2 and 0.8. In this region, the bound varies predominantly due variation in the volatility-to-volume

ratio – at least in our canonical application to the cross-section of U.S. stocks. Panel a) of Appendix

Figure E.2 reinforces this conclusion more formally by plotting the partial derivative of the bound with

respect to ρ. The derivative is small in absolute terms in a large surrounding neighborhood of ρ = 0.5

but grows significantly for extreme degrees of homo-/heterogeneity, i.e., as ρ approaches 1 or 0. The

fact that the partial derivative, d, is mostly small implies that a very precise estimate of ρ is required to

differentiate between models with M = 1 versus models with M = 0.5. On the other hand, rejecting

the null hypothesis that M < 0.1, as implied by most canonical frictionless models, merely requires

to show that ρ < 0.99. Arguably, this is a much lower hurdle to cross given the extensive literature

on heterogeneity in preferences and beliefs among investors. Therefore, rather than trying to provide

a precise estimate of ρ, our objective is to establish that ρ is unlikely to be close to either 0 or 1. In

this case, the part of Equation (10) which relates to investor heterogeneity, D =
√

1
ρ − 1, is relatively

close to 1 and, thus, the simple volatility-to-volume ratio is as a close proxy for the actual price impact

bound.

Unfortunately, common portfolio-based measures of disagreement, such as short interest and active

share, cannot directly inform us about investor homogeneity, as these measures are endogenous to

prices and thus already contain information about elasticities – the very quantity we seek to speak

to. For this reason, we estimate ρ directly from survey data. To that end, we estimate investor

homogeneity via stock analyst homogeneity. This approach is almost model-free, as it does not require

imposing any specific covariance structure on the underlying demand shocks. However, it does require

that the estimated ρ for analysts is “portable” and, thus, reflects well the ρ of investors. Importantly,

we do not assume that investors and analysts are the same agents – only that the cross-sectional

dispersion in analyst forecasts is a reasonable proxy for the heterogeneity in investors’ demand shifts.

Notably, because analysts tend to operate within a relatively homogeneous professional environment,

and because belief heterogeneity captures only one aspect of broader investor heterogeneity, the limited

dispersion in analyst expectations likely understates the degree of heterogeneity among the full set of
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investors.

Since analysts submit forecasts across different horizons – from one-quarter ahead to long-term

growth rates – and investors care about total discounted cash flows when trading stocks, we estimate

analyst homogeneity at different horizons. To be consistent with our theoretical framework, we focus

on homogeneity in quarterly updates of forecasts of Institutional Broker Estimates System (I/B/E/S)

stock analysts. Specifically, let ∆fh
i,t(n) denote the update of the earnings per share (EPS) forecast of

firm n in period t made by analyst i for horizon h. We then estimate analyst homogeneity ρhEPS(n) for

each stock n and forecast horizon h as the adjusted R2 from regressing ∆fh
i,t(n) on time fixed effects:14

∆fh
i,t(n) = γt + ϵhi,t(n) for each n and h, (16)

where γt denotes time fixed effects. We estimate Equation (16) for horizons ranging from one-

quarter ahead to three-quarters ahead, as well as long-term growth rates (LTG). The details of the

sample construction and estimation procedures can be found in Appendix C.3.

Table 2: Summary Statistics of ρ Estimated from Earnings Forecast Updates
The table reports the distribution of investor homogeneity ρ estimated from analyst forecast updates using Equation
(16). For each stock and forecast horizon, ρ is computed as the adjusted R2 from regressing analyst forecast updates on
time fixed effects. 1Q, 2Q, and 3Q refer to one-quarter ahead, two-quarter ahead, and three-quarter ahead earnings per
share (EPS) forecasts, respectively. LTG refers to long-term growth forecasts.

Horizon # Firms Mean 5th Pctl Median 95th Pctl

1Q 754 0.53 0.16 0.56 0.80

2Q 669 0.47 0.11 0.48 0.76

3Q 585 0.41 0.07 0.4 0.75

LTG 366 0.29 0.0 0.26 0.72

Table 2 reports the cross-sectional distribution of ρh(n) for different forecast horizons. Intriguingly,

analyst homogeneity exhibits a clear term structure across forecast horizons: as the horizon increases,

analysts increasingly disagree with each other. This pattern is intuitive – forecast uncertainty grows

with the forecasting horizon, and fewer reliable common signals are available for analysts to anchor their

expectations. Since a stock’s value reflects discounted cash flows across all horizons, investors’ demand

shocks incorporate innovations to expected cash flows possibly across all horizons. Consequently,

estimates derived from forecasts for one quarter and long-term growth can be interpreted as lower and
14We first demean forecast updates across time within each analyst, ensuring that the total variation in the regression

excludes heterogeneity in average forecast updates. See Appendix C.3 for more details.
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upper bounds of investor homogeneity originating from cash flow expectations.

For stocks in the United States, the average update in one-quarter ahead earnings per share forecasts

across analysts explains approximately 53% of the total variation in EPS updates. At this level of

investor agreement (ρ = 53%), we obtain an average stock-level price impact of 0.75. In contrast, the

average update in long-term growth forecasts explains only 29% of the total variation in LTG updates,

implying a price impact of 1.0. Across all measures of investor homogeneity, we rarely observe values

of ρ exceeding 80%, suggesting that for the vast majority of stocks price impact exceeds 0.5 and price

elasticity falls below 2.

Alternatively, we can compare our estimates of investor homogeneity from I/B/E/S data against

the investor homogeneity implied by event-study estimates of price impact. To that end, we take the

empirical estimates of M at face value and use Equation (10) to impute ρ. Panel a) of Figure 5 reports

average ρ based on survey data along with the stock-level price impact bound as a function of ρ for the

average stock. We plot the average ρ obtained from 1, 2, and 3-quarter ahead EPS forecast updates,

as well as LTG updates. Panel b) documents the implied ρ based on price impact estimates from the

literature. For the range of price impacts found in event studies (such as index inclusions, mutual fund

flow-induced trades, and dividend reinvestments) our bound implies that investor agreement ρ should

roughly lie between 0.1 and 0.75. Notably, all our estimates from I/B/E/S data are well within this

range.

Figure 5: Investor Heterogeneity: IBES versus Event Studies
Panel a) plots the average ρ from survey data along with the stock-level price impact bound as a function of ρ for the
average stock. We plot the average ρ obtained from 1, 2, and 3-quarter ahead EPS forecast updates, as well as LTG
updates. Panel b) plots the investor homogeneity implied from the range of price impacts found in event studies. The
dotted lines indicate the implied investor homogeneity by the event-study range.
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4.3 The Price Impact Bound

Next, we apply our estimates of investor homogeneity obtain a lower bound on the price impact for

each individual stock as follows:

MEPS(n) ≡
σp(n)

σq(n)

√
1

ρEPS(n)
− 1 (17)

All of the following results are robust to use any of the four forecast-horizon specific estimates

of ρ derived from I/B/E/S data in our calculations of the lower bound. However, to maximize the

cross-sectional sample size, we rely on ρ estimated based on one-quarter ahead EPS forecasts in our

baseline results.

As discussed earlier, the EPS-based price impact bound is imperfect, as it ignores the heterogeneity

along many other dimensions. Moreover, for values of ρ in the neighborhood of 0.5, the term (
√

1
ρ − 1)

is close to 1 in magnitude and relatively insensitive to the level of ρ. Therefore, we also consider a

simplified bound M̃(n) defined as the volatility-to-volume ratio, implicitly assuming that ρ(n) = 0.5

for all stocks n. Formally,

M̃(n) ≡ σp(n)

σq(n)
. (18)

Henceforth, we refer to M̃(n) as the volatility-to-volume ratio, or simply as the “volatility ratio”

when a shorter expression is more convenient. In all our empirical tests, we report results for both

MEPS(n) and M̃(n). Interestingly, MEPS(n) contains important incremental information compared

to M̃(n) when explaining price reactions, despite ρ being measured with noise. Importantly, many

other liquidity measures which rely on prices and trading volume such as Amihud (2002) (and the large

body of work building on it) are in theory similarly affected by investor homogeneity, ρ. However, this

does not directly become evident as many empirical measures of liquidity do not have a micro-founded

equilibrium interpretation.

Panel a) of Figure 6 plots the distribution of the price impact bound MEPS(n). For the average

stock, the lower bound on the price impact is around 1. The top 5% of stocks have bounds exceeding

3.15 Overall, there is considerable heterogeneity in the bound across stocks which we will explore in

the next section. Importantly, the magnitudes of our bounds are consistent with empirical reduced-

form evidence from index inclusions (for example, Shleifer (1986)), mutual fund flow-induced trades

(for example, Lou (2012)), benchmarking intensity (for example, Pavlova and Sikorskaya (2022)), and
15The distribution of the simple volatility ratio, M̃(n), is very similar in shape and magnitudes.
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dividend reinvestments (for example, Schmickler (2020)). Our bounds highlight that low demand

elasticities are not an artifact of unique event studies but are instead a pervasive fact, that can be

directly inferred from the high volatility to volume ratio and the amount of investor heterogeneity in

the market.

Finally, Panel b) of Figure 6 graphically documents the cross-sectional correlation between M̃(n)

and MEPS(n) is very high at 84%. Relatedly, Appendix Figure E.2 decomposes the cross-sectional

variation in MEPS(n) and shows that ρ plays a minor role relative to σq and σp. Put differently, the

cross-sectional variation of ρEPS(n) is not large enough to dominate the cross-sectional variation in
σp(n)
σq(n)

.16

Figure 6: Implied Price Impact for US Equities
The figure plots the distribution of price impact for the cross-section of US stocks. Panel a) plots the distribution of
MEPS(n) ≡ σp(n)

σq(n)

√
1

ρEPS(n)
− 1. We use our baseline measure of investor homogeneity ρ extracted from EPS forecast

updates ρEPS. Panel b) plots the correlation between MEPS and the simple volatility ratio M̃ =
σp

σq
.
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5 Empirical Relevance of the Stock-Level Bounds

Our stock-level bounds are ultimately theoretical constructs that provide lower limits on the expected

price impact of investor-specific demand shocks. That is, the bounds are particularly valuable in

settings where empirical estimates are unavailable or difficult to obtain. For instance, identifying a

source of plausibly exogenous demand shocks to credibly estimate the price impact for broad portfolios,

such as the total U.S. equity market, is challenging. Similarly, estimating asset-level price impact

is challenging because much of the carefully identified event-study evidence relies on cross-sectional
16As discussed in Section 4.2, more formally, the reason for the minor role of investor homogeneity is that the derivative

∂M
∂ρ

= − 1
2
M̃ 1

ρ2

√
1/ρ− 1 is small as long as ρ does not take extreme values, i.e. 0 or 1.
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variation and, thus, obtains pooled estimates across assets. However, to trust our model-implied

bounds in such a context, it is crucial to verify that the bounds align well with the empirical evidence

from settings with credible identification strategies. To that end, we focus on two of the most widely

used and verified event studies in empirical asset pricing. Mutual fund flow-induced trades and index

inclusions. In particular, we test whether these (plausibly) exogenous demand shifts imply a larger

price change for stocks with a higher price impact bound, M.

5.1 Flow-induced trades

Following Coval and Stafford (2007), Lou (2012), and Edmans et al. (2012), flow-induced trades by

mutual funds (FIT) have been a widely used source of (plausibly) exogenous variation in demand. We

follow the construction of flow-induced trades by Lou (2012) and relegate details to the Appendix C.4.

To test whether stocks with higher price impact bounds have higher FIT returns, we interact FIT with

MEPS. We then run panel regressions of quarterly stock returns onto FIT, the interaction of FIT with

our bounds, and time fixed effects. Appendix Table E.1 reports corresponding results. As expected,

the impact of flow-induced trades is significantly larger for stocks with higher price impact bounds as

evidenced by the positive and statistically significant coefficient on the interaction term. Moreover,

we sort the stocks into quintiles based on MEPS and estimate the flow-induced price impact for each

quintile by interacting FIT with quintile dummies. Panel a) of Figure 7 plots the results graphically

and Appendix Table E.1 reports the results numerically. In line with our theoretical predictions, price

impact estimates increase monotonically moving from the lowest to the highest price impact bound

quintile. For example, the flow-driven price impact for the top quintile of stocks is about twice as large

in magnitude compared to the bottom quintile.

5.2 Index Inclusions

Following Shleifer (1986) and Harris and Gurel (1986), an extensive body of literature investigates

the average (abnormal) return around index inclusions and exclusions.17 Index reconstitutions imply

large uninformed demand shifts for the affected securities stemming from passive index trackers who

mechanically buy the included and delete the excluded stocks from their portfolios. Relying on the data

provided by Greenwood and Sammon (2025) on abnormal event returns and S&P500 reconstitutions, we

find an average abnormal event return of 8%. However, there is considerable variation in event returns
17Among others, Petajisto (2011), Madhavan (2003), Chang et al. (2015), Pavlova and Sikorskaya (2022)
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with the cross-sectional standard deviation being equal to 12%. Similar to Section 5.1, we examine

whether stocks with higher MEPS experience significantly higher abnormal event returns. We find that

our price impact bounds are highly statistically significantly related to abnormal event returns. In other

words, stocks with high bounds have significantly higher (lower) returns when included (excluded) from

the S&P500. As for flow-induced trades, we sort the included and excluded stocks into quintiles by

their price impact bound and regress event returns onto the quintiles. Greenwood and Sammon (2025)

find that index returns from announcement to effective reconstitution have declined over time, likely

because investors increasingly front-run inclusions ahead of the announcement, spreading the effect

over a longer window. We therefore focus on the pre-2000 period, when the average index effect

was strongest. We also report the results for the whole sample period, which are quantitatively and

qualitatively unchanged, but statistically weaker. Panel b) of Figure 7 plots the results graphically

and Appendix Table E.2 reports the results numerically. As before, abnormal returns are increasing

when moving from the lowest to the highest price impact bound quintile. For example, the abnormal

inclusion return for the top quintile of stocks is about 2.5 times as large in magnitude compared to the

bottom quintile.

Figure 7: Validation: S&P500 Inclusions and Flow-Induced Trades
The figure summarizes the empirical validation of our bounds. Panel a) plots the coefficient of regressing quarterly
stock-returns onto flow-induced trades (FIT) interacted with quintile dummies of our price impact bound. Panel b) plots
the coefficient of regressing (signed) abnormal event returns during S&P500 index reconstitutions onto quintile dummies
of our price impact bound. We report 95% confidence intervals using standard errors clustered by date.
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5.3 Alternative Measures of Price Impact

In this section, we investigate whether the price impact implied by our bounds is different from standard

measures of liquidity which rely on gross as opposed to net trading volume. In particular, we use two
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alternative measures: the ratio of return volatility to gross-volume σp

CRSP Vol. (as opposed to using net

volume σq in the denominator); and the Amihud (2002) illiquidity measure. Appendix Tables E.3 and

E.4 repeat the FIT and S&P500 inclusion regressions for these alternative measures. Importantly, the

measures based on gross trading volume do not explain the abnormal returns due to demand shocks.

In fact, relying on gross rather than net trading volume renders interaction term between FIT and the

price impact measure M insignificant. This suggests that – beyond simply inflating net volume due

to round-trip trades – gross trading volume is not suited to measure long-term liquidity provision.

In summary, we conclude that our theoretically motivated bounds are empirically relevant. More-

over, the distinction between gross and net volume is particularly important when examining price

reactions due to persistent demand shocks.

6 Exploring the Bounds Beyond Event Studies

The previous section documented that our bounds are empirically relevant when measuring long-term

price impact of investor-specific demand shocks. Based on this evidence, we next explore the cross-

sectional variation of our measures in different settings. To do this, we rely on our simplified measure,

M̃, whenever there is no suitable measure of investor homogeneity ρ available, for example, due to

limited time-series variation or lack of estimates of ρ for aggregated portfolios.

6.1 Secular Trends in Price Impact

First, we examine the evolution of the average stock-level M̃ during our sample period from 1980 to

2024. To that end, we construct two versions of our simplified bound. First, the solid line in Figure

8 refers the bound as per our theoretical framework (and Equation (18)) and uses net volume in the

denominator. Second, the dashed line in the same figure refers to the ratio of return volatility to gross

volume, instead.

Quarterly gross volumes have increased monotonically over the past 45 years from 10% in 1980 to

60% in 2024. At the same time, return volatility has remained roughly unchanged over the same time

span. Therefore, the price impact bound implied by gross trading volume has continuously declined

over our sample period from close to 1 to 0.2. Instead, the level of net volume has remained largely

unchanged during our sample period. As a result, the level of the average price impact bound of

persistent (quarterly) demand shifts has not materially changed over the same time period. This
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stark divergence over time between the two lines in Figure 8 has important implications: Despite

soaring trading activity, markets have not become significantly better at absorbing long-term demand

shocks. Whereas market participants that have entered since 1980 – such as high-frequency market

makers, ETF authorized participants, algorithmic trading firms, and (mobile) retail traders – have

likely contributed to the surge in trading volumes, these participants typically engage in short-term

strategies do not help absorbing long-term demand shifts. To further substantiate this, Appendix D

provides case study evidence on prominent market makers such as Jane Street Capital and Citadel

Securities. In fact, Appendix Figure D.1 documents that these two market-making firms jointly account

for over 35% of gross trading volume but less than 1% of net volume.

Figure 8: Secular Trends in Price Impact
The figure plots the stock-level volatility-to-volume ratio M̃ for the median stock in the US from 1980 to 2024. We
construct M̃ using both gross trading volume (from CRSP) and net volume to compute σq, with σp and σq based on
5-year backward-looking rolling averages.
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6.2 Differences in Price Impact in the Cross-Section of Stocks

In the following we ask the question: Which stocks have higher price impact bounds? To this end, we

regress MEPS and M̃ on various stock-specific characteristics such as size (market equity), systematic

risk (market beta), momentum (cumulative past returns), book-to-market ratio, dividend to book

equity ratio, profitability, and the illiquidity measure from Amihud (2002). Table 3 reports the results.
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Table 3: Heterogeneity in M
The table summarizes how M across different stocks. We regress M and the simplified σp

σq
on the stock-specific charac-

teristics, log market equity, market beta, momentum, dividend to book equity, profitability, and amihud illiquidity.

MEPS M̃

(1) (2) (3) (4)

log(ME) -0.396***
(0.017)

-0.383***
(0.017)

-0.675***
(0.033)

-0.593***
(0.029)

β 0.121***
(0.010)

0.159***
(0.011)

0.148***
(0.013)

0.134***
(0.012)

Cum. Ret. 0.160***
(0.013)

0.151***
(0.009)

0.138***
(0.007)

0.125***
(0.006)

BM -0.112***
(0.013)

-0.111***
(0.012)

-0.127***
(0.012)

-0.111***
(0.011)

Dividend
BE 0.015

(0.009)
0.023*
(0.009)

-0.028*
(0.011)

-0.026*
(0.010)

Profit -0.085***
(0.011)

-0.088***
(0.010)

-0.001
(0.011)

0.001
(0.010)

Amihud Illiquidity 0.261***
(0.017)

0.265***
(0.017)

0.182***
(0.014)

0.167***
(0.013)

Date - x x x
Stock - - x x

Observations 287895 287895 287895 287895
R2 0.255 0.283 0.586 0.590
R2 Within - 0.250 0.147 0.148

Significance levels: ∗ p < 0.05, ∗∗ p < 0.01, ∗ ∗ ∗ p
< 0.001. Format of coefficient cell: Coefficient (Std.
Error)

First, we find that M is significantly smaller for larger stocks. That is, a one standard deviation

increase in stock size is associated with a 0.13 decline in price impact (t-statistic of 12). This aligns

with the view that larger stocks are more liquid, possibly due to more precise and readily available

information. Notably, however, this finding contrasts Haddad et al. (2021) and Jiang et al. (2025),

who document that large stocks are less elastic than small stocks.

Second, stocks with higher market betas exhibit significantly larger price impacts, i.e., a one stan-

dard deviation increase in market beta raises the price impact by 0.1. This is consistent with standard

CARA-normal intuition: stocks that contribute more to the risk of an arbitrage portfolio are more

sensitive to demand shocks (Greenwood (2005), Kozak et al. (2018)).

Third, stocks with stronger past cumulative returns (i.e., momentum stocks) have significantly

larger price impacts. This finding aligns with the idea that momentum traders – with upward-sloping

demand curves – continue to trade in the direction of the initial price movement, thereby reducing

market liquidity and further amplifying price shifts.

Fourth, stocks with higher Amihud (2002) illiquidity have a higher M. Perhaps, this is not sur-
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prising as our bounds could be interpreted as low-frequency counterpart to the original Amihud (2002)

illiquidity measure. Importantly, however, Amihud (2002) illiquidity does not explain an economically

meaningful fraction of our price impact relative to other characteristics. That is, a one standard de-

viation increase in illiquidity is associated only with an economically relatively small increase in price

impact of 0.04. As argued in Section 3.2, gross trading volume (as opposed to net volume) is not

well-suited to assess the price impact of long-term demand shifts.

Importantly, all documented patterns are robust – in fact become stronger – when we additionally

control for stock fixed effects. Finally, our results also remain unchanged when we use our simplified

bounds, M̃ =
σp

σq
, as an independent variable. This further corroborates the fact that our results seem

not to be driven by the investor homogeneity parameter which is notoriously difficult to quantify.

6.3 Price Impact for Aggregated Portfolios

Our bounds are particularly helpful for investigating settings for which there is a lack of relevant and

exogenous demand shifts, such as the aggregate stock market. Gabaix and Koijen (2021) find that the

aggregate stock market is considerably more inelastic than individual stocks. Our simplified bounds are

informative about the price impact for aggregated portfolios as they rely only on two simple empirical

moments: return volatility and net volume.

Specifically, we compute M̃ using various portfolio compositions. That is, we start from individual

stocks and then successively aggregate to 49 Fama-French industry portfolios, 12 Fama-French industry

portfolios, the six portfolios double-sorted on size and book-to-market, three portfolios sorted on size,

and, finally, one overall market portfolio. To this end, we first compute return volatility σp(g) and net

volume σq(g) at these different levels of aggregation. Let g ⊆ N denote the subset of stocks belonging

to a given portfolio. Return volatility at aggregation level g is then simply the rolling 5-year standard

deviation of the value-weighted portfolio return. For example, for the aggregate stock market, σp(g) is

the standard deviation of the value-weighted return across all stocks. Net volume for aggregation level

g is given by

NetVolt(g) =
∑

i=1∆|Qi,t(g)|
Qt−1(g)

, (19)

where Qi,t(g) =
∑

n∈g ∆Qi,t(n)Pt−1(n) and Qt−1(g) =
∑I

i=1

∑
n∈g Qi,t−1(n)Pt−1(n). The numerator

measures the total dollar flow in and out of portfolio g between t−1 and t. The denominator measures

the total dollar value of portfolio g as of t − 1. For example, for the aggregate stock market, the
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denominator is given by the total stock market capitalization. As before, we then approximate σq as

the scaled average of net volume σq(g) ≈
√

π/2

T E[NetVolt(g)] estimated from 5-year rolling windows.

Figure 9: Volatility and Volume at different Levels of Aggregation
The figure plots the volatility of returns σp(g) and net volume σq(g) at different levels of aggregation g ranging from
individual stocks to the aggregate stock market.
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Figure 9 plots our estimates of σq(g) and σp(g) at seven different levels of aggregation. At the

individual stock level, net volume σq is largest. However, as we aggregate stocks into fewer and fewer

portfolios, σq systematically declines. This pattern is intuitive, as investors’ trades in a given stock

within a portfolio partly offset each other, which reduces the portfolio net volume. At the same time,

return volatility also declines with aggregation. As before, this is intuitive and expected from basic

portfolio theory, where diversification reduces idiosyncratic risk. Importantly, however, what matters

most for our price impact bounds is the relative speed at which the volatility of returns and net volume

decline – ultimately, an empirical question. In the data, return volatility decreases at a lower pace. As

a result, M̃ rises with aggregation as can directly be seen from Figure 10. In fact, the average M̃ rises

from 1.4 to almost 2.0 when moving from individual stocks to the aggregate market.
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Figure 10: Portfolio Level Price Impact
The figure plots the bound-implied price impact for different levels of aggregation ranging from individual stocks, indus-
tries, characteristic portfolios and the aggregate stock market. For each level of aggregation, we plot σp

σq
, which is the

price impact implied by ρ = 0.5.
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6.4 Round-trip Trades and Liquidity Provision

As discussed at length above, while gross volume might be a valuable quantity to examine the market’s

ability to absorb transitory demand shocks, it is not suitable to assess the long-term price impact of

persistent demand shifts. In summary, we argue that gross volume overstates long-term liquidity for

at least two reasons. First, it takes into account offsetting round-trip trades both over time and

across assets. To further illustrate how relying on gross volume distorts liquidity assessments at lower

frequencies, we compare the results from Figures 9 and 10 to the resulting M̃ when we use gross volume

instead of net volume in our calculations. Figure 11 reports the results.

Panel a) illustrates how much larger gross volume is relative to net volume. While net volume

declines monotonically with aggregation as discussed above, gross trading volume remains unchanged.

This lays bare a key shortcoming of gross volume measures. Without investor-level trade data, it is

impossible to identify and control for trades that effectively swap two stocks within the same portfolio

and do not provide liquidity to the overall portfolio. Panel b) plots the simplified price impact bound,

M̃, constructed either from gross or net volume. The difference is as striking as intuitive. Gross volume

based price impact increases with aggregation, whereas net volume based price impact decreases with

aggregation. That is, liquidity measures based on gross volume can create the misleading impression

33



that larger, more aggregated portfolios are more liquid at lower frequencies – that is, trading 1% of their

market value incurs a smaller percentage price impact. In contrast, we argue that when using a suitable

measure of volume, net volume, the relationship between long-run price impact and aggregation flips.

Figure 11: Gross vs Net Volume: Implications for Portfolio Price Impact
The left panel plots gross and net volumes for different levels of aggregation. The right panel plots the simplified price
impact bound, M̃, constructed either from gross or net volume.
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(b) Implied Price Impact: Net versus Gross
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7 Conclusion

This paper reveals a fundamental tension between investor heterogeneity and elasticity: when return

volatility is high while trading volume is low, market participants cannot simultaneously be highly

heterogeneous in their beliefs and highly elastic in their responses to price changes. We formalize this

trade-off through a model-free bound, M ≥ σp

σq
×
√

1
ρ − 1, that connects return volatility, net volume,

and investor heterogeneity to the price impact of persistent demand shifts. Applied to U.S. equities,

our bounds imply substantial price impacts of 0.75 to 1.0 for individual stocks, closely aligning with

event study evidence from S&P 500 inclusions and mutual fund flows while traditional gross volume-

based liquidity measures fail to explain these price impacts. Despite a five-fold increase in gross trading

volume over 30 years, long-term price impact has remained unchanged. Our bounds vary systematically

across assets – with larger stocks exhibiting lower price impacts and higher-beta stocks showing greater

impacts – and increase substantially with portfolio aggregation, reaching approximately 2.0 for the

aggregate stock market. Our bound provides a diagnostic tool for structural models seeking to reconcile

volumes and return volatilities, and a sanity check for empirical studies on investor heterogeneity and

price impact.
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Appendix A Proofs

A.1 Proof to Theorem 1

We prove our main theorem 1 under a weaker assumption than Assumption 1:

Assumption A.1. Denote βu
i,S ≡ Cov(ui,t,uS,t)

V ar(uS,t)
is the coefficient of regressing the demand shock of

investor i, ui,t, on the aggregate demand shock, uS,t. We have the following regularity condition:

V̂ ar
cs

S (
ζi
ζS

)− 2Ĉov
cs

S (
ζi
ζS

, βu
i,S) > 0

We first provide the proof to Theorem 1 under the relaxed assumption A.1, and discuss the intuition

behind the condition.

Proof to Theorem 1. Given the demand curve equation (1) and price equation (3), we have

∆qi,t = ui,t −
ζi
ζS

uS,t,

Let σ2
i ≡ V ar(ui,t) denote the variance of investor i’s demand shock, and σiS ≡ Cov(ui,t, uS,t) denote

the covariance between investor i’s demand shock and the aggregate demand shock. The variance of

flows and price are:

σ2
q,i = V ar(∆qi,t) = σ2

i − 2
ζi
ζS

σiS +
ζ2i
ζ2S

V ar(uS,t)

σ2
p = V ar(∆pt) =

1

ζ2S
V ar(uS,t)

The size-weighted average flow volatility is:

σ2
q =

∑
i

Siσ
2
q,i

= Êcs
S

[
σ2
i

]
− 2Êcs

S

[
ζi
ζS

σiS

]
+ Êcs

S

[
ζ2i
ζ2S

]
V ar(uS,t)

= Êcs
S

[
σ2
i

]
− 2

(
Êcs
S

[
ζi
ζS

]
Êcs
S [σiS ] + Ĉov

cs

S

[
ζi
ζS

, σiS

])
+

(
Êcs
S

[
ζi
ζS

]2
+ V̂ ar

cs

S

(
ζi
ζS

))
V ar(uS,t)
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Notice that:

Êcs
S

[
ζi
ζS

]
=

1

ζS

∑
i

Siζi = 1

Êcs
S [σiS ] =

∑
i

SiCov (ui,t, uS,t) = V ar(uS,t)

The expression can be simplified as:

σ2
q = Êcs

S

[
σ2
i

]
− V ar (uS,t)− 2Ĉov

cs

S

[
ζi
ζS

, σiS

]
+ V̂ ar

cs

S

(
ζi
ζS

)
V ar (uS,t)

Under Assumption A.1 that V̂ ar
cs

S ( ζi
ζS
)−2Ĉov

cs

S ( ζi
ζS
, βu

i,S) > 0, where we note that βu
i,S = σiS

V ar(uS,t)
, the

condition becomes:

V̂ ar
cs

S

(
ζi
ζS

)
− 2Ĉov

cs

S

[
ζi
ζS

,
σiS

V ar(uS,t)

]
> 0

which implies V̂ ar
cs

S

(
ζi
ζS

)
V ar(uS,t)− 2Ĉov

cs

S

[
ζi
ζS
, σiS

]
> 0.

Therefore:

σ2
q ≥ Êcs

S

[
σ2
i

]
− V ar (uS,t)

The ratio of σ2
q to σ2

p is given as:

σ2
q

σ2
p

≥ ζ2S

(
1

V ar(uS,t)/Êcs
S

[
σ2
i

] − 1

)
.

Using the definition ρ =
V ar(uS,t)

Êcs
S [σ2

i ]
from the main text, we get:

σ2
q

σ2
p

≥ ζ2S

(
1

ρ
− 1

)
.

Taking the square root and using M = 1
ζS

, we have the bound:

M ≥ σp
σq

×
√

1

ρ
− 1

Remarks. As discussed in the main text, introducing heterogeneity in elasticities can increase the

flow volatility for a given level of demand heterogeneity, as different responses to price changes provide
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another reason to trade other than heterogeneity in demand.

Assumption A.1 further relaxes the independence assumption in Assumption 1 by allowing for

the cross-sectional dependence of data-generating process on the demand shocks and the elasticity,

captured by the cross-sectional covariance between elasticity and the correlation with the aggregate

demand shock, Ĉov
cs

S ( ζi
ζS
, βu

i,S).

The cross-sectional covariance between the elasticity and the correlation with aggregate shocks also

affect the flow volatility. To see this more clearly, note that the condition in Assumption A.1 can also

be expressed in terms of the correlation with the change in price:

Ĉov
cs

S (
ζi
ζS

, βu
i,S) =

1

ζ2S
Ĉov

cs

S (ζi, β
u
i,p)

where βu
i,p =

Cov(ui,t,∆pt)
V ar(∆pt)

is the regression coefficient of the demand shock ui,t on the change in price

∆pt. Notice that though it is defined as the loading on the price, the causality runs the other way:

demand shocks move the price, not vice versa.

All else equal, flow volatility can also be high because investors whose demand shocks move the

price more (high βu
i,p) are also less responsive to price changes (Ĉov

cs

S (ζi, β
u
i,p) < 0), and hence their

demand shocks are more manifested in the observed trading. Empirically, large investors, who have

larger weights in the aggregation and hence typically are more represented in the aggregate demand

shocks, tend to be less responsive to price changes in proportion to their size relative to small investors,

often due to trading costs or price impact concerns.

On the contrary, when investors whose demand shocks track the price closer are also more price-

elastic, Ĉov
cs

S ( ζi
ζS
, βu

i,p) > 0, the opposite channel may dampen the observed flow volatility. Intuitively,

their demand shocks are less passed through to the realized trading as they react to the disadvantageous

price changes. When this force is overly strong, we may even end up in a pathological equilibrium

where investors on average sell when they receive positive demand shocks.18

The condition in Assumption A.1 allows for the latter case, but essentially requires that it is

dominated by the increase in flow volatility due to the dispersion in elasticities.
18To be precise, we may have the empirical moment such that Êcs

S [Cov(∆qi,t, ui,t)] < 0. Note that
Êcs

S [Cov(∆qi,t, ui,t)] = Êcs
S [σ2

i − ζi
ζS

Cov(ui,t, uS,t)]. Using the equality Êcs
S [ ζi

ζS
Cov(ui,t, uS,t)] = V ar(uS)+Ĉov

cs

S

[
ζi
ζS

, σi,S

]
as in the proof, we can show that Êcs

S [Cov(∆qi,t, ui,t)] < 0 when Ĉov
cs

S ( ζi
ζS

, βu
i,S) >

√
1
ρ
− 1.
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Appendix B Microfoundations

We start with demand curve representations of portfolio choice under CRRA utility in B.1. We then

extend the analysis to a learning-from-price model in B.2.

B.1 CRRA Utility

Consider the portfolio choice problem of an investor with CRRA utility in a two-period model. With

log-normal returns, the utility maximization gives the standard portfolio choice formula:

PQi

Wi
=

µ−Rf

γiσ2
R

where Wi is the investor’s wealth, γi the risk aversion, µ ≡ E
[
D
P

]
the expected return, Rf the risk-free

rate, and σR the return volatility.

We perturb the portfolio-choice problem around a symmetric equilibrium where PQi

Wi
= 1 with

first-order log-linearization.19 We use lowercase letters to denote the log of the uppercase counterpart,

and use bar and ∆ to indicate the symmetric equilibrium value and the deviation from the original

equilibrium, respectively. We have:

∆qi ≈ − µ̄

µ̄− r̄︸ ︷︷ ︸
δ̄

∆p+
µ̄

µ̄− r̄
E [∆d]−∆ log γi −∆ log σ2

R︸ ︷︷ ︸
ui

(B.1)

In the CRRA model, the demand elasticity δ̄ is determined by the risk free rate and the expected

return, which in the equilibrium is further pinned down by the return volatility and risk aversion; the

demand shifter ui comes from different sources, changes in expectations about fundamentals (E [∆d]),

changes in risk aversion and uncertainty.

B.2 Learning-From-Price Model à la Hellwig (1980)

We extend the CRRA model to incorporate learning-from-price, adapting the framework from Hellwig

(1980).

To focus on the learning-from-price mechanism, we consider a simplified version where demand

shocks come only from heterogeneous expectations about dividend changes:
19By perturbing around the equilibrium with PQi

Wi
= 1, we simplify the expression by eliminating the change in wealth

on the left-hand side.
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∆qi = −δ̄∆p+ δ̄Ei [∆d] (B.2)

The crucial assumption is that investors form expectations about dividend changes using both a

private signal si and information extracted from the equilibrium price. We specify the information

structure in details later. Here, we postulate that expected dividend changes are formed as a linear

combination:

Ei [∆d] = αssi + αp∆p (B.3)

where αs and αp are equilibrium coefficients that reflect how much weight investors place on their

private signals versus price information.

Substituting (B.3) into (B.2) gives us the demand curve with learning-from-price:

∆qi = −δ̄∆p+ δ̄ (αssi + αp∆p)

= −δ̄ (1− αp)︸ ︷︷ ︸
ζ

∆p+ δ̄αssi︸ ︷︷ ︸
ui

(B.4)

The key insight is that learning from prices makes demand less elastic: the effective elasticity

ζ = δ̄(1 − αp) is smaller than the elasticity δ̄ under rational expectations. When investors observe a

price increase, they partly interpret it as conveying positive information about fundamentals, leading

them to increase rather than decrease their demand.

To interpret the demand curve in the main text, Equation (B.4) is sufficient. For completeness,

below we provide a full characterization of the equilibrium to pin down the coefficients αs and αp.

Equilibrium Characterization To fully characterize the equilibrium, we need to determine αs and

αp. We consider a market with N agents of respective sizes Si (where
∑

i Si = 1), and eventually take

N to infinity. We also consider noise traders who submit orders un.

Market clearing requires: ∑
i

Si∆qi = 0
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From the demand equation (B.4), market clearing implies:

0 = −ζ∆p+ δ̄αs

∑
i

Sisi + un

⇒ ∆p =
δ̄αssS + un

ζ
(B.5)

where sS ≡
∑

i Sisi is the size-weighted average signal. This can be rewritten as:

∆p =
αs

1− αp

sS +
un
δ̄αs︸︷︷︸
≡sN


where sN represents the effective "noise signal" from noise trading.

Information Structure and Signal Extraction We assume the fundamental follows:

D = D̄ exp

(
∆d− 1

2
σ2
∆d

)

where ∆d ∼ N (0, σ2
∆d).

Each investor receives a private signal si ∼ N (0, σ2
s) with correlation structure:

cov(si, sj) = ρσ2
s for i ̸= j (B.6)

cov(si,∆d) = βσ2
s (B.7)

In the limit as N → ∞, the conditional expectation of ∆d given signals si and the aggregate signal

sS + sN (a linear function of the price) is:

E [∆d | si, sS + sN ] =
βσ2

N

σ2
N + σ2

sρ(1− ρ)
si +

βσ2
s(1− ρ)

σ2
N + σ2

sρ(1− ρ)
(sS + sN ) (B.8)

where σ2
N is the variance of the noise signal sN . The derivation is provided at the end of this

section.

Using the price equation, we can express this conditional expectation in terms of si and ∆p:

E [∆d | si,∆p] = αssi + αp∆p
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Matching coefficients, we obtain:

αs =
βσ2

N

σ2
N + σ2

sρ(1− ρ)
(B.9)

αp =
σ2
s(1− ρ)

σ2
N + σ2

s(1− ρ)
(B.10)

Substituting back into the demand equation:

∆qi = δ̄
βσ2

N

σ2
N + σ2

sρ(1− ρ)
si︸ ︷︷ ︸

ui

− δ̄
σ2
N

σ2
N + σ2

s(1− ρ)︸ ︷︷ ︸
ζ

∆p

The final elasticity expression reveals the trade-off inherent in learning from prices. On one hand,

when private signals are less correlated across investors (low ρ), more new information can be extracted

from the price, making the market more inelastic. On the other hand, when noise trader flows are

larger (high σ2
N ), the price becomes a less precise signal, making the market more elastic.

Derivation of the conditional expectation formula

Proof. The signal covariance matrix is given as (treating each i as infinitesimally small):

Σs = var




si

sS + sN


 =


σ2
s ρσ2

s

ρσ2
s ρσ2

s + σ2
N


To compute the (2,2) entry, notice that:

var(sS) = var

(∑
i

Sisi

)
= σ2

s

∑
i

S2
i +

∑
i ̸=j

SiSjρ


= σ2

s

(1− ρ)
∑
i

S2
i + ρ

∑
i

∑
j

SiSj


= σ2

s (ρ+ (1− ρ)H)

where H =
∑

i S
2
i . Taking the limit as N → ∞, we have H → 0, so var(sS) = ρσ2

s .
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The covariance between signals and ∆d is:

cov(∆d, si) = βσ2
s

cov(∆d, sS + sN ) = βσ2
s

Thus Σs,∆d =


βσ2

s

βσ2
s

.

The conditional expectation is given by ΣT
s,∆dΣ

−1
s


si

sS + sN

. Computing this yields the formula

in the main text.

Appendix C Data Construction Details

C.1 Flow Measures

Quarterly trades ∆Qi,t(n) and changes in shares outstanding ∆Q̄t(n) = Q̄t(n)− Q̄t−1(n) are adjusted

for stock splits in quarter t. We construct trades by the residual investor as ∆Q0,t(n) = ∆Q̄t(n) −∑I
i=1∆Qi,t(n). All results in the paper are robust to omitting the residual sector and constructing

Q̄t(n) (and the corresponding size weights) as the sum of institutional shares held. However, we prefer

the construction of the residual sector as this effectively accounts for the trades by the institutional

sector as a whole, which is otherwise omitted. Furthermore, scaling by institutional shares held leads to

some large outliers for smaller stocks that are held by very few institutions. Quarterly trades in percent

are denoted by qi,t(n) =
∆Qi,t(n)
Qi,t−1(n)

. To reduce the effect of outliers, we also use the Davis-Haltiwanger

growth rate 1992, following Gabaix and Koijen (2021) qi,t(n) =
2(Qi,t(n)−Qi,t−1(n))
Qi,t(n)+Qi,t−1(n)

. The results are

robust to either definition. When using net volume as the L1 approximation of flow volatility (the

size-weighted variance of qi,t(n)), there is no need to express trades in percent, as net volume sums

raw trades ∆Qi,t(n) relative to supply. This makes net volume a more robust estimator, less sensitive

to outliers, and the treatment of extensive versus intensive margin trades.
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C.2 Net Volume at the Fund Level

In the main text, we compute all net volumes at the 13F institution level to ensure comprehensive

coverage. However, for asset managers with multiple subsidiary funds, institutional-level net volumes

exclude intra-family transactions, which may potentially explain why net volumes are smaller than

gross volumes. This section uses disaggregated mutual fund holdings data to demonstrate that netting

effects from within-institution aggregation are negligible.

We disaggregate fund families in the 13F institutional holdings data (S34 file) using Thomson

Reuters mutual fund holdings data (S12 file). Using the S12-S34 link table, we match mutual fund

holdings to their corresponding asset managers in the 13F data. For asset managers whose total

holdings exceed the sum of their subsidiary fund holdings, we construct a residual entity representing

the difference between institutional and mutual fund holdings. We retain institutions in the 13F data

that are not matched to any mutual fund. We then compute net volume from this merged dataset

using the same methodology as in the main text.

As an additional validation, we construct fund-level net volume using an alternative source: the

CRSP Survivor-Bias-Free US Mutual Fund Database, which provides comprehensive coverage of mu-

tual funds and ETFs but excludes other investor types. Since these funds account for a smaller share of

market ownership than the broader 13F universe, we normalize net volume within the dataset—dividing

net trading activity by the total shares held by all CRSP funds, rather than by shares outstanding. Nor-

malizing by shares outstanding would yield much smaller net volumes and render them non-comparable

to those based on 13F data.

Figure C.1 compares net volume measures computed using these two approaches with our baseline

institutional-level measures. The red line shows the net volume computed from the disaggregated 13F

data using S12 mutual fund holdings files. The blue line presents net volume computed from the CRSP

Survivor-Bias-Free US Mutual Fund Database. Despite being computed from different data sources

and aggregation levels, the baseline institutional net volume are very close to the fund-level measures,

confirming that netting effects from within-institution aggregation are negligible.
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Figure C.1: Net Volume at the Fund Level
The figure compares net volume measures at the 13F institutional level with net volumes computed at the fund level.
Net Volume (in black) shows the baseline net volume computed from 13F institutional holdings data. Net Volume
disaggregated (in red) presents net volume computed from 13F data disaggregated using Thomson Reuters S12 mutual
fund holdings files. Net Volume Mutual Fund & ETFs (in blue) presents net volume computed from the CRSP Survivor-
Bias-Free US Mutual Fund Database, normalized within the dataset.

1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

10

20

30

40

50

60

70

Tu
rn

ov
er

 (%
)

Gross Volume
Net Volume
Net Volume (Disaggregated)
Net Volume (Mutual Funds & ETFs)

C.3 Measuring Investor Homogeneity from I/B/E/S

We measure investor homogeneity using analyst forecast data from I/B/E/S, leveraging the idea that

the cross-sectional distribution of analyst beliefs serves as a proxy for the cross-sectional distribution

of investor demand. This section details the sample construction and methodology for estimating

homogeneity parameter ρ.

C.3.1 Data Sources and Sample Selection

We obtain analyst earnings forecasts from the I/B/E/S Detail History database (ibes.det_epsus).

We only use S&P 500 constituent firms to ensure sufficient number of forecasts. We then link I/B/E/S

tickers to CRSP identifiers through a multi-step process: first matching I/B/E/S tickers to Compustat’s

gvkey using the security linking table (comp.security), then connecting gvkey to CRSP’s permno

through the CCM linking table using link types LU and LC. Finally, we filter for forecasts made while

firms were S&P 500 constituents using historical index membership data.

We focus on two types of forecasts:
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• Quarterly Earnings-per-Share (EPS) forecasts (FPI codes 6, 7, 8, 9): Representing 1-

through 4-quarter ahead EPS forecasts;

• Long-term growth (LTG) forecasts (FPI code 0): Representing long-term earnings growth

rates.

C.3.2 Construction of Forecast Updates

We identify forecasters at the institution level (estimator, brokerage house or sell-side institution), to

be consistent with the holdings data which is also at the 13F institution level.

For each forecaster-firm pair, we track how forecasts evolve over time:

EPS Forecast Updates: For quarterly EPS forecasts, we track how forecasters update their fore-

casts for a specific earnings announcement as it approaches. Each forecast target is uniquely identified

by the firm and fiscal period end date (fpedats), with the actual earnings released on anndats_act.

We define the forecast horizon as the number of days between when a forecast is made (anndats)

and when actual earnings are released (anndats_act), converted to quarters by dividing by 90. We

retain forecasts made within 400 days of the actual release and round horizons to the nearest quarter

with a 30-day tolerance window. When multiple forecasts exist for the same forecaster-target-horizon

combination, we select the earliest forecast.

Denote the forecasted EPS by forecaster i at time t for firm n and horizon h as fh
i,t(n). Updates

are then calculated as percentage changes between consecutive horizons for the same target:

∆fh
i,t(n) = fh

i,t(n)− fh+1
i,t−1(n)

By construction, fh
i,t(n) is around 90 days later than fh+1

i,t−1(n), matching the frequency of holdings

data.

LTG Forecast Updates: Long-term growth forecasts differ from EPS forecasts as they lack a specific

target date and thus no natural horizon measure. For these forecasts, we track quarter-to-quarter

changes by assigning each forecast to a quarter based on its announcement date (anndats). To avoid

partial quarter effects, forecasts made 45 or more days into a quarter are assigned to the following

quarter. For each forecaster-firm-quarter combination, we retain only one forecast (the earliest if
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multiple exist). Updates are then calculated as simple differences (not percentages) between consecutive

quarterly LTG forecasts:

∆fLTG
i,t (n) = fLTG

i,t (n)− fLTG
i,t−1(n)

where fLTG
i,t (n) is the long-term growth forecast by forecaster i in quarter t for firm n.

C.3.3 Estimation of Homogeneity Parameter ρ

Following our theoretical framework, we estimate forecaster homogeneity ρ(n) as the adjusted R2 from

regressing individual forecast updates on time fixed effects. Specifically, For each firm n and forecast

type (EPS at horizon h or LTG), we then estimate:

∆f̂h
i,t(n) = ∆fh

t (n) + ϵhi,t(n) for each h ∈ {1, 2, 3, LTG}

where ∆f̂h
i,t(n) = ∆fh

i,t(n)−∆fh
i (n) are the demeaned forecast updates within each forecaster-horizon-

firm combination, and ∆fh
t (n) are time fixed effects. The adjusted R2 from this regression captures

the proportion of forecast update variation explained by common time effects, serving as our measure

of homogeneity ρhEPS(n).

We use adjusted R2 as opposed to the original R2, as the latter can incur a large bias when the

number of forecasters is small: When there are only N forecasters, the expected raw R2 will be around

1
N even with completely independent forecasts (hence the population R2 is 0), while the adjusted R2

have an expectation of 0 in this case. However, the adjusted R2 can be negative in the sample. In

these rare cases (mostly occur in the LTG forecasts when number of forecasters is small), we truncate

the adjusted R2 at 0.

To further reduce noises due to unbalanced panels, we apply the following filters before estimating

ρhEPS(n): For each firm-horizon pair in quarterly EPS forecasts, we drop forecasters with less than 5

periods of forecast updates, and drop periods with less than 5 forecasters per firm-horizon combination.

We repeat this filter iteratively until no more forecasters or periods can be dropped. The LTG forecasts

are more sparse, hence we lower the threshold for the number of periods of forecast updates per

forecaster-firm-quarter combination and the number of forecasters per firm-quarter combination to 4

and 3, respectively. Table C.1 reports the average characteristics of the final sample.
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Table C.1: I/B/E/S Average Number of Forecasters and Updates
The table reports average characteristics of the I/B/E/S forecast sample used to estimate investor homogeneity. “N
Periods” refers to the average number of time periods with forecasts per firm-horizon pair. “N Forecasters” is the average
number of unique estimators covering each firm-horizon pair. “N Updates per Period” is the average number of forecast
updates per firm-period. “N Updates” is the total average number of forecast updates per firm. 1Q-3Q refer to one-quarter
through three-quarters ahead EPS forecasts, and LTG refers to long-term growth forecasts.

Horizon N Periods N Forecasters N Updates per Periods N Updates

1Q 44.2 26.0 11.5 510.2

2Q 41.3 25.0 10.9 452.4

3Q 37.6 22.6 10.1 379.8

LTG 16.5 5.2 3.5 57.7

C.4 Flow-Induced Trades by Mutual Funds

TBC

Appendix D Case Study: Citadel and Jane Street

We illustrate the difference between net and total trading volume using a simple example of several

market-making firms, which report both quarterly 13F filings (used to compute net volume) and

publicly disclosed trading activity (used to approximate total trading volume). Citadel Securities

report on their website that they account for 23% of total equity trading volume in the US.20 Similarly,

Jane Street Capital reports that it accounts for 10.4% of equity trading in the US.21 We compute the

total net volume for the largest US market makers that file their quarterly end-of-quarter holdings with

the SEC, including Citadel, Jane Street, Virtu, and Two Sigma. Figure D.1 plots their joint share of

total net volume from 2011 to 2023. While Jane Street and Citadel alone account for over 30% of total

equity trading volume in the US, all of these market makers account for less than 2% of net volume.

This underlines that high-frequency market-making firms are less relevant for providing liquidity to

persistent demand shifts at longer horizons.
20See https://www.citadelsecurities.com/what-we-do/equities/, accessed on May, 27, 2025.
21See https://www.bloomberg.com/news/articles/2024-04-17/jane-street-scores-10-6-billion-trading-hau

l-amid-growth-push.
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Figure D.1: Case Study: Market Makers and Net Volume
The figure plots share of total net volume that is driven by Citadel, Jane Street, Virtu, and Two Sigma.
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Appendix E Additional Figures and Tables

Figure E.1: Net Volume versus Flow Volatility
The figure plots the relationship between flow volatility σq(n) =

√∑
i Si(n)σ2

q,i(n) and average net volume√
π
2
E[

∑
i |∆Qi|
Q∗ ], which are size-weighted averages of L2 and L1 norms respectively.
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Figure E.2: Empirical Relevance of ρ
Panel a) plots the derivative ∂M

∂ρ
= − 1

2
M̃ 1

ρ2

√
1/ρ− 1 as a function of ρ for the average US stock. Panel b) decomposes

the variance of logMEPS into its underlying components log σp, log σq, logD where D =
√

1/ρ− 1.
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Table E.1: Validation: Flow-Induced Trades
The table summarizes the empirical validation of our bounds. We report the Panel coefficient of regressing quarterly
stock-returns onto flow-induced trades (FIT) interacted with our bound M, as well as the interaction with quintile
dummies of M. Formally, rt(n) = αt + β1FITt(n) + β2Mt(n) + β3

(
Mt(n) × FITt(n)

)
+ ϵt(n). T-stats are computed

using standard errors clustered by date.

Ret.

(1) (2) (3)

FIT 3.820***
(0.510)

2.635***
(0.636)

MEPS 0.004
(0.004)

FIT × MEPS 1.256*
(0.565)

FIT × MEPS quintile: 1 2.755***
(0.624)

FIT × MEPS quintile: 2 3.175***
(0.588)

FIT × MEPS quintile: 3 4.029***
(0.577)

FIT × MEPS quintile: 4 4.152***
(0.718)

FIT × MEPS quintile: 5 5.485***
(0.938)

Date x x x
MEPS quintile - - x

Observations 152862 152862 152862
R2 0.249 0.250 0.250
R2 Within 0.004 0.005 0.005

Significance levels: ∗ p < 0.05, ∗∗ p < 0.01,
∗ ∗ ∗ p < 0.001. Format of coefficient cell: Co-
efficient (Std. Error)
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Table E.2: Validation: S&P500 Inclusions
The table summarizes the price impact of index inclusions and their relationship with our bound. We report the
coefficient of regressing (signed) abnormal event returns during S&P500 index reconstitutions onto the bound M. T-
stats are computed using standard errors clustered by date. Columns (1)–(3) report results for the full sample period,
while columns (4)–(6) restrict the analysis to the pre-2000 subsample.

Abnormal Return

(1) (2) (3) (4) (5) (6)

MEPS 0.058*
(0.025)

0.110*
(0.046)

MEPS quintile: 1 0.046***
(0.014)

-0.015
(0.028)

MEPS quintile: 2 0.082***
(0.024)

0.058
(0.032)

MEPS quintile: 3 0.073***
(0.016)

0.082**
(0.028)

MEPS quintile: 4 0.076***
(0.016)

0.082**
(0.029)

MEPS quintile: 5 0.140***
(0.024)

0.174***
(0.039)

Intercept 0.080***
(0.008)

0.039
(0.021)

0.088***
(0.016)

-0.002
(0.039)

Observations 837 686 686 390 239 239
R2 0.021 0.036 0.040 0.038 0.091 0.096
Adj. R2 0.017 0.029 0.027 0.028 0.072 0.061

Significance levels: ∗ p < 0.05, ∗∗ p < 0.01, ∗ ∗ ∗ p < 0.001.
Format of coefficient cell: Coefficient (Std. Error)

Table E.3: Flow-Induced Trading: Alternative Impact Measures
The table summarizes the coefficient of regressing quarterly stock-returns onto flow-induced trades (FIT) interacted with
our bound M, the simplified bound M̃, the bound constructed from CRSP total volume σp

CRSP Vol. , as well as Amihud
liquidity. T-stats are computed using standard errors clustered by date.

Ret.

MEPS M̃ σp

CRSP Vol.Amihud Illiquidity
(1) (2) (3) (4)

FIT 2.635***
(0.636)

2.505***
(0.622)

3.376***
(0.574)

3.772***
(0.568)

M 0.004
(0.004)

0.004
(0.005)

0.023
(0.012)

-0.001***
(0.000)

FIT × M 1.256*
(0.565)

1.519*
(0.623)

2.352
(1.277)

0.014
(0.050)

Date x x x x

Observations 152862 152862 152862 152862
R2 0.250 0.250 0.250 0.250
R2 Within 0.005 0.005 0.005 0.005

Significance levels: ∗ p < 0.05, ∗∗ p < 0.01, ∗ ∗ ∗ p
< 0.001. Format of coefficient cell: Coefficient (Std.
Error)
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Table E.4: S&P500 Inclusions: Alternative Impact Measures
The table summarizes the price impact of index inclusions and their relationship with our bound. We report the
coefficient of regressing (signed) abnormal event returns during S&P500 index reconstitutions onto the bound M, the
simplified bound M̃, the bound constructed from CRSP total volume σp

CRSP Vol. . T-stats are computed using standard
errors clustered by date.

Abnormal Return

MEPS M̃ σp

CRSP Vol.Amihud Illiquidity
(1) (2) (3) (4)

M 0.058*
(0.025)

0.114***
(0.027)

0.062
(0.046)

0.008
(0.004)

log(ME) -0.000
(0.013)

0.008
(0.011)

0.007
(0.013)

0.003
(0.014)

β 0.009
(0.011)

0.007
(0.010)

0.018
(0.010)

0.020
(0.010)

Dividend
BE 0.011

(0.008)
0.005

(0.007)
0.005

(0.007)
0.008

(0.008)
Profit -0.021*

(0.010)
-0.023*
(0.009)

-0.025**
(0.009)

-0.021*
(0.010)

Observations 686 837 837 666
R2 0.036 0.049 0.025 0.027
Adj. R2 0.029 0.043 0.019 0.020

Significance levels: ∗ p < 0.05, ∗∗ p < 0.01, ∗ ∗ ∗ p
< 0.001. Format of coefficient cell: Coefficient (Std.
Error)
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